\(\int (a+a \sec (c+d x))^{5/2} \, dx\) [111]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 14, antiderivative size = 98 \[ \int (a+a \sec (c+d x))^{5/2} \, dx=\frac {2 a^{5/2} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {14 a^3 \tan (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}+\frac {2 a^2 \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{3 d} \]

[Out]

2*a^(5/2)*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d+14/3*a^3*tan(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+2/3
*a^2*(a+a*sec(d*x+c))^(1/2)*tan(d*x+c)/d

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.357, Rules used = {3860, 4000, 3859, 209, 3877} \[ \int (a+a \sec (c+d x))^{5/2} \, dx=\frac {2 a^{5/2} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {14 a^3 \tan (c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {2 a^2 \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d} \]

[In]

Int[(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(2*a^(5/2)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (14*a^3*Tan[c + d*x])/(3*d*Sqrt[a + a*
Sec[c + d*x]]) + (2*a^2*Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x])/(3*d)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3859

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(a + x^2), x], x, b*(C
ot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 3860

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Simp[(-b^2)*Cot[c + d*x]*((a + b*Csc[c + d*x])^(
n - 2)/(d*(n - 1))), x] + Dist[a/(n - 1), Int[(a + b*Csc[c + d*x])^(n - 2)*(a*(n - 1) + b*(3*n - 4)*Csc[c + d*
x]), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n]

Rule 3877

Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*b*(Cot[e + f*x]/(
f*Sqrt[a + b*Csc[e + f*x]])), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 4000

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Dist[c, In
t[Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Sqrt[a + b*Csc[e + f*x]]*Csc[e + f*x], x], x] /; FreeQ[{a, b,
 c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a^2 \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{3 d}+\frac {1}{3} (2 a) \int \sqrt {a+a \sec (c+d x)} \left (\frac {3 a}{2}+\frac {7}{2} a \sec (c+d x)\right ) \, dx \\ & = \frac {2 a^2 \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{3 d}+a^2 \int \sqrt {a+a \sec (c+d x)} \, dx+\frac {1}{3} \left (7 a^2\right ) \int \sec (c+d x) \sqrt {a+a \sec (c+d x)} \, dx \\ & = \frac {14 a^3 \tan (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}+\frac {2 a^2 \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{3 d}-\frac {\left (2 a^3\right ) \text {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d} \\ & = \frac {2 a^{5/2} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {14 a^3 \tan (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}+\frac {2 a^2 \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{3 d} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 6.45 (sec) , antiderivative size = 360, normalized size of antiderivative = 3.67 \[ \int (a+a \sec (c+d x))^{5/2} \, dx=\frac {\csc ^3\left (\frac {1}{2} (c+d x)\right ) \sec ^5\left (\frac {1}{2} (c+d x)\right ) (a (1+\sec (c+d x)))^{5/2} \sqrt {\frac {1}{1-2 \sin ^2\left (\frac {1}{2} (c+d x)\right )}} \sqrt {1-2 \sin ^2\left (\frac {1}{2} (c+d x)\right )} \left (256 \cos ^4\left (\frac {1}{2} (c+d x)\right ) \, _3F_2\left (\frac {3}{2},2,\frac {7}{2};1,\frac {9}{2};2 \sin ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sin ^6\left (\frac {1}{2} (c+d x)\right )+512 \operatorname {Hypergeometric2F1}\left (\frac {3}{2},\frac {7}{2},\frac {9}{2},2 \sin ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sin ^6\left (\frac {1}{2} (c+d x)\right ) \left (2-3 \sin ^2\left (\frac {1}{2} (c+d x)\right )+\sin ^4\left (\frac {1}{2} (c+d x)\right )\right )+\frac {21 \sqrt {2} \arcsin \left (\sqrt {2} \sqrt {\sin ^2\left (\frac {1}{2} (c+d x)\right )}\right ) \left (15-10 \sin ^2\left (\frac {1}{2} (c+d x)\right )+3 \sin ^4\left (\frac {1}{2} (c+d x)\right )\right )}{\sqrt {\sin ^2\left (\frac {1}{2} (c+d x)\right )}}-14 \sqrt {1-2 \sin ^2\left (\frac {1}{2} (c+d x)\right )} \left (45+30 \sin ^2\left (\frac {1}{2} (c+d x)\right )-31 \sin ^4\left (\frac {1}{2} (c+d x)\right )+12 \sin ^6\left (\frac {1}{2} (c+d x)\right )\right )\right )}{672 d \sec ^{\frac {5}{2}}(c+d x)} \]

[In]

Integrate[(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(Csc[(c + d*x)/2]^3*Sec[(c + d*x)/2]^5*(a*(1 + Sec[c + d*x]))^(5/2)*Sqrt[(1 - 2*Sin[(c + d*x)/2]^2)^(-1)]*Sqrt
[1 - 2*Sin[(c + d*x)/2]^2]*(256*Cos[(c + d*x)/2]^4*HypergeometricPFQ[{3/2, 2, 7/2}, {1, 9/2}, 2*Sin[(c + d*x)/
2]^2]*Sin[(c + d*x)/2]^6 + 512*Hypergeometric2F1[3/2, 7/2, 9/2, 2*Sin[(c + d*x)/2]^2]*Sin[(c + d*x)/2]^6*(2 -
3*Sin[(c + d*x)/2]^2 + Sin[(c + d*x)/2]^4) + (21*Sqrt[2]*ArcSin[Sqrt[2]*Sqrt[Sin[(c + d*x)/2]^2]]*(15 - 10*Sin
[(c + d*x)/2]^2 + 3*Sin[(c + d*x)/2]^4))/Sqrt[Sin[(c + d*x)/2]^2] - 14*Sqrt[1 - 2*Sin[(c + d*x)/2]^2]*(45 + 30
*Sin[(c + d*x)/2]^2 - 31*Sin[(c + d*x)/2]^4 + 12*Sin[(c + d*x)/2]^6)))/(672*d*Sec[c + d*x]^(5/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(171\) vs. \(2(84)=168\).

Time = 1.53 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.76

method result size
default \(\frac {2 a^{2} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (3 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )+3 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+8 \sin \left (d x +c \right )+\tan \left (d x +c \right )\right )}{3 d \left (\cos \left (d x +c \right )+1\right )}\) \(172\)

[In]

int((a+a*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

2/3/d*a^2*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)*(3*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(co
s(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)+3*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*
x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+8*sin(d*x+c)+tan(d*x+c))

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 310, normalized size of antiderivative = 3.16 \[ \int (a+a \sec (c+d x))^{5/2} \, dx=\left [\frac {3 \, {\left (a^{2} \cos \left (d x + c\right )^{2} + a^{2} \cos \left (d x + c\right )\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left (8 \, a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{3 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}, -\frac {2 \, {\left (3 \, {\left (a^{2} \cos \left (d x + c\right )^{2} + a^{2} \cos \left (d x + c\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left (8 \, a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )\right )}}{3 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}\right ] \]

[In]

integrate((a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[1/3*(3*(a^2*cos(d*x + c)^2 + a^2*cos(d*x + c))*sqrt(-a)*log((2*a*cos(d*x + c)^2 - 2*sqrt(-a)*sqrt((a*cos(d*x
+ c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*(8*a^2*cos(d*x
 + c) + a^2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^2 + d*cos(d*x + c)), -2/3*(
3*(a^2*cos(d*x + c)^2 + a^2*cos(d*x + c))*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/
(sqrt(a)*sin(d*x + c))) - (8*a^2*cos(d*x + c) + a^2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*
cos(d*x + c)^2 + d*cos(d*x + c))]

Sympy [F]

\[ \int (a+a \sec (c+d x))^{5/2} \, dx=\int \left (a \sec {\left (c + d x \right )} + a\right )^{\frac {5}{2}}\, dx \]

[In]

integrate((a+a*sec(d*x+c))**(5/2),x)

[Out]

Integral((a*sec(c + d*x) + a)**(5/2), x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1395 vs. \(2 (84) = 168\).

Time = 0.54 (sec) , antiderivative size = 1395, normalized size of antiderivative = 14.23 \[ \int (a+a \sec (c+d x))^{5/2} \, dx=\text {Too large to display} \]

[In]

integrate((a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

1/6*(30*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(3/4)*a^(5/2)*sin(1/2*arctan2(sin(2
*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/
4)*((12*a^2*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(2*d*x + 2*c) - 3*a^2*sin(2*d*x + 2*c) - 4
*(3*a^2*cos(2*d*x + 2*c) + 4*a^2)*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(3/2*arctan2(sin(2*
d*x + 2*c), cos(2*d*x + 2*c) + 1)) + (12*a^2*sin(2*d*x + 2*c)*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*
c))) + 3*a^2*cos(2*d*x + 2*c) - a^2 + 4*(3*a^2*cos(2*d*x + 2*c) + 4*a^2)*cos(3/2*arctan2(sin(2*d*x + 2*c), cos
(2*d*x + 2*c))))*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt(a) + 3*((a^2*cos(2*d*x + 2*c)^
2 + a^2*sin(2*d*x + 2*c)^2 + 2*a^2*cos(2*d*x + 2*c) + a^2)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 +
2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x
+ 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(
2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(c
os(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) +
 sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))
) + 1) - (a^2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*x + 2*c)^2 + 2*a^2*cos(2*d*x + 2*c) + a^2)*arctan2((cos(2*d*x +
 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*
c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x +
2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2
*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d
*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2
*d*x + 2*c), cos(2*d*x + 2*c)))) - 1) - (a^2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*x + 2*c)^2 + 2*a^2*cos(2*d*x + 2
*c) + a^2)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(si
n(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/
4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) + (a^2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*x + 2
*c)^2 + 2*a^2*cos(2*d*x + 2*c) + a^2)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) +
1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 +
2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1))*sqrt(a))/((cos(2*
d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*d)

Giac [F]

\[ \int (a+a \sec (c+d x))^{5/2} \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int (a+a \sec (c+d x))^{5/2} \, dx=\int {\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2} \,d x \]

[In]

int((a + a/cos(c + d*x))^(5/2),x)

[Out]

int((a + a/cos(c + d*x))^(5/2), x)